
Co-synthesis techniques for

embedded systemsembedded systems

Kelvin Yuk

June 5, 2002

EEC282 - Akella

Introduction

• Co-synthesis of high-level systems

• Approaches to co-synthesis

1. Architectural Co-synthesis Algorithm

2. Process partitioning and HW/SW

Repartitioning Algorithm

• Some drawbacks

• Conclusions

Why do we need good co-synthesis

methods

• Exploring the design space of HW/SW design is

costly.

• Need to strike a balance between flexibility (SW)

and performance (HW) while reducing cost

• Want to automate synthesis of system to meet

design requirements. Alternative => heuristics

• Performance parameters:

�communication channels

�hardware costs

�processing time (SW vs. HW)

Architectural Co-Synthesis Algorithm

• Models system on a architectural level

consisting of processors, memories, I/O

controllers etc.

• Targets multiprocessor designs• Targets multiprocessor designs

• Non-hardware specific heuristic algorithm

• Dependant on process scheduling onto

available hardware

• Meet specs first, reduce costs in a

hierarchical way

Architectural Co-Synthesis Algorithm

cont’d

1. Generate an initial solution by allocating

processes to PE’s to meet the specs. Determine

communication rates and schedule processes.

2. Reallocate processes to PE’s to minimize PE

cost.cost.

3. Reallocate processes again to minimize inter-PE

communication

4. Allocate communication channels

5. Allocate devices, either internally to PE’s or

externally to communication channels.

Architectural Co-Synthesis Algorithm and Partial

Order Model Partitioning Tree

Process and HW/SW Repartitioning

Algorithm

• Based on Hierarchical Partial Order Model

(HPOM) which models processes. Performance

of HPOM can be estimated. HPOMs can be

combinedcombined

• Generation of Partitioning Tree (PT) to explore

possible configurations of HPOMs

• Initialize system of HPOMs as software (least

likely to meet specs) and implement into hardware

(most likely to meet specs) where needed

Algorithm
1. System is modeled as a set of basic HPOMs

2. Partitioning tree is generated for sets of HPOMs.
Each level of the tree represents a different
HPOM realization of the system

3. All HPOMs of all levels are initialized as SW
and tested to see if requirements met

4. If specs is not met, the HPOM with the least
communication overhead is converted from SW
to HW.

5. HW to SW conversion repeats until level meets
specs or is fully HW

6. Levels that meet specs are considered as possible
implementations of the system

Some Drawbacks

• Partitioning and Repartitioning algorithm is

computationally intensive

– Each HPOM is estimated in terms of speed

implementation cost and communication costs

– HPOMs need to be reestimated when converting from

SW to HWSW to HW

• Multiprocessor algorithm dependant on processes

scheduling onto general purpose processors.

Lacks flexibility in co-design.

• Architectural: meet specs => reduce costs

• HPOMs: minimal costs => meet specs

Conclusions

• Full exploration of design space is time-

consuming

• Co-synthesis algorithms are model • Co-synthesis algorithms are model

dependant

• Heuristic algorithms are not perfect but

provide a quick solution in co-design

